choreo.segm.ODE.ImplicitRKTable.symplectic_adjoint#
- ImplicitRKTable.symplectic_adjoint(self) ImplicitRKTable #
Computes the symplectic adjoint of a
ImplicitRKTable
.The flow defined by a Hamiltonian initial value problem preserves the symplectic form. A Runge-Kutta method is said symplectic if this conservation property holds at the discrete level. In the particular case of separable Hamiltonian initial value problems, a Runge-Kutta method paired with its symplectic adjoint in a partitionned integrator is symplectic. Cf [1] and [2] for more details about symplectic adjoints and associated conservation properties.
- Cited:
Example
>>> import choreo >>> import numpy as np >>> random_method = choreo.segm.multiprec_tables.ComputeImplicitRKTable(nodes=np.random.random(10)) >>> random_method.is_symplectic_pair(random_method.symplectic_adjoint()) True
See also
- Returns:
The adjoint Runge-Kutta method.
- Return type: